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Abstract

We establish a new group-contribution model based on the Nernst–Einstein equation in which the diffusion coefficient is derived from the
modified double-lattice (MDL) model and the Debye–Hückel (DH) theory. The model includes the combinatorial energy contribution that is
responsible for the revised Flory–Huggins entropy of mixing, the van der Waals energy contribution from dispersion, and the polar force and
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he specific energy contribution from hydrogen bonding.
The Nernst–Einstein equation takes into account the mobility of the salt and the motion of the polymer host. To describe the segmental
otion of the polymer chain, which is the well known conduction mechanism for solid polymer electrolyte (SPE) systems, the effective

o-ordinated unit parameter is introduced.
Our results show that good agreement is obtained upon comparison with experimental data of various PEO and salt systems in the interested

anges.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid polymer electrolytes (SPEs), formed by dissolving
alts in a polymer matrix, have long received extensive atten-
ion because of their potential for achieving high ionic con-
uctivities. Their many direct applications are high-energy-
ensity batteries, electrochromic display devices (ECD), and
uel cells [1–5].

Solid polymer electrolytes have improved safety for
ithium battery compared to liquid electrolytes, but they are
nown to result with insufficient performance, especially due
o low ionic conductivity. Researches on the electrochemical
pplications of SPEs have, therefore, focused on the ionic
onductivity for each complex.

∗ Corresponding author. Tel.: +82 2 2220 0529; fax: +82 2 2296 0568.
E-mail address: ycbae@hanyang.ac.kr (Y.C. Bae).

RL: http://www.inchem.hanyang.ac.kr/lab/mtl/.

To increase the ionic conductivities of SPE, the polymer
should have both low Tg and low crystallinity. Reibel
et al. [6] described ionic conductivities of PEO/lithium
bis(4-nitrophenylsulfonyl)imide (LiNPSI), and PEO/lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) systems as
polymer electrolytes. Sreekanth et al. [7] reported an
application of PEO complexes with NaNO3 salt as an
electrochemical cell. Andreev and Bruce [8] investigated
the structure-conductivity relation of PEO/LiAsF6 in the
analogous phase. Reddy and Chu [9] also reported the
structure-conductivity relation of PEO with potassium
ionic salt. Historically, for the quantitative study of the
ionic conduction, Gibbs and co-workers [10,11] developed
the configurational entropy model for polymer properties,
which has been discussed extensively by Goldstein [12].
Configurational entropy (or free volume) models can be
expressed in the form of a Vogel–Tamman–Fulchur (VTF)
equation [13–15], which is generally used for describing
the dependence of conductivity on temperature. SØrensen
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and Jacobsen [16] developed a simple model that accounts
quantitatively for the concentration dependence of the
conductivity for the low purity type electrolyte. MacFarlane
et al. [17] investigated the effect of plasticizer on the
conductivity by using the Adam–Gibbs model combined
with Flory’s configurational entropy at the fixed temperature.

Recently, Kim and Bae [18,19] developed configurational
entropy model for conductivities of SPEs that can express
the composition dependence of the given systems based
both on the Adam and Gibbs conductivity model and on
the Flory’s entropy model. To take into account the pres-
sure effect on the ionic conductivities of the compressed
SPE systems, Ahn and Bae [20,21] and Choi and Bae [22]
extended Kim’s configurational entropy model. It is impor-
tant that the salt effect must be taken into account in the ionic
conductivity model because the ionic conduction is worked
by the mobility of salt as well as the segmental motion of
polymer.

The purpose of this work is to overcome the shortcomings
of the previous models by taking into account the salt effect in
the conductivity model using a group-contribution method.

Group-contribution method is very efficient tool to
describe thermodynamic properties of polymer solution
because it utilizes exiting phase equilibrium data when pre-
dicting phase behaviors of given systems of which data are
not plentiful. The ultimate goal of the group-contribution
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(salt). It describes ionic conductivities of number of SPE/Li
and sodium salt systems at various temperatures and compo-
sitions.

2. Model description

Three theoretical aspects are taken into account: the lat-
tice notation of a Debye–Hückel type function proposed by
Guggenheim [25,26], modified double-lattice model [24] and
Flory’s melting point depression concept [23].

In this study, the expression for the Helmholtz energy of
mixing for binary polymer solutions is defined as a sum of
two contributions.

The total molar Gibbs energy of mixing �GTotal
mix is

assumed to consist of an extended Debye–Hückel theory and
modified double-lattice theory:

�GTotal
mix

RT
= �GMDL

mix

RT
+ �GDH

mix

RT
(1)

where �GMDL
mix /RT is the Helmholtz energy of modified

double-lattice model; �GDH
mix/RT , the Helmholtz energy of

Debye–Hückel model; R, the gas constant and T is the abso-
lute temperature.
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ethod lies in its ability to predict physical properties for
ystems which are not included in the experimental data, that
s the set of data uses to determine the parameters. The basic
dea is starting from that whereas the chemical compounds
f interest in chemical technology are numerous, the number
f functional groups which constitute those compounds is,
owever, much smaller. Thermodynamic properties of a fluid
hen can be calculated as sum of contributions made by the
unctional groups. However, any group-contribution method
s necessarily approximate as the contribution of given group
n one molecule is not necessarily the same as that in another

olecule.
To describe the ionic conductivity of the given systems, we

mploy the diffusion coefficient for which the driving force
s based on a gradient of chemical potential.

To account for the effect of both salt and polymer concur-
ently, the sum of each chemical potential is differentiated
ith concentration. Since the conduction mechanism in SPE

s correlated with segmental motion of polymer chain, the
ffective co-ordination between salt and polymer units is
aken into account.

Each chemical potential is calculated from Flory’s
elting point depression theory [23] combined with

he modified double-lattice (MDL) theory and the
ebye–Hückel (DH) theory extended by Guggenheim. Com-
ination of the derived diffusion coefficient equation with
ernst–Einstein relationship yields the final conductivity

quation.
In this work, we develop a new group-contribution model

aking into account interactions between different species
.1. Modified double-lattice model

.1.1. Primary lattice
Oh and Bae [24] proposed a new Helmholtz energy of

ixing as the form of Flory–Huggins theory. The expression
s given by:

�A

NrkT
=
(

φ1

r1

)
lnφ1 +

(
φ2

r2

)
lnφ2 + χOBφ1φ2 (2)

here Nr is the total number of lattice sites; k, the Boltzmann’s
onstant and ri is the number of segments per molecule i. χOB
s a new interaction parameter and functions of ri and ε̃ and
s given by:

OB = Cβ

(
1

r2
− 1

r1

)2

+
(

2 + 1

r2

)
ε̃

−
(

1

r2
− 1

r1
+ Cγε̃

)
ε̃φ2 + Cγε̃2φ2

2 (3)

˜ is a reduced interaction parameter given by:

˜ = ε

kT
= (ε11 + ε22 − 2ε12)

kT
(4)

here ε11, ε22 and ε12 are for the corresponding nearest-
eighbor segment–segment interactions. Parameters Cβ and
γ are universal constants. These constants are not adjustable
arameters and are determined by comparing with Madden
t al.’s Monte–Carlo simulation data (r1 = 1 and r2 = 100).
he best fitting values of Cβ and Cγ are 0.1415 and 1.7985,

espectively [24].
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2.1.2. Secondary lattice
In Freed’s theory [27,28], the solution of the Helmholtz

energy of mixing for the Ising model is given by:

�A

NrkT
= x1 ln x1 + x2 ln x2 + zε̃x1x2

2
− zε̃2x2

1x
2
2

4
+ · · ·

(5)

where z is the coordination number and xi is the mole fraction
of the component i.

To obtain an analytical expression for the secondary lat-
tice, we defined a new Helmholtz energy of mixing as the
fractional form to improve the mathematical approximation
defect by revising Eq. (5). This secondary lattice is introduced
as a perturbation to account for the oriented interaction. The
expression is given by:

�Asec,ij

NijkT

= 2

z

[
η ln η + (1 − η) ln(1 − η) + zCα�ε̃ij(1 − η)η

1 + Cα�ε̃ij(1 − η)η

]
(6)

where �Asec,ij is the Helmholtz energy of mixing of the sec-
ondary lattice for i–j segment–segment pair; Nij, the number
of i–j pairs, �ε̃, the reduced energy parameter contributed by
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To correlate MDL model to melting point depression the-
ory, we require chemical potentials of components 1 and 2.
The definition of chemical potential is:

�µi

kT
= ∂(�A/kT )

∂Ni

(9)

The final expression for the chemical potential can be writ-
ten as:

�µ1

kT
= ln(1 − φ2) − r1

(
1

r2
− 1

r1

)
φ2

+ r1

[
Cβ

(
1

r2
− 1

r1

)2

+
((

1

r2
− 1

r1

)
+ Cγε̃

)
ε̃

+
(

2 + 1

r2

)
ε̃

]
φ2

2

− 2r1

[((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃ + Cγε̃2

]
φ3

2

+ 3r1Cγε̃2φ4
2 (10)

and

�µ2

kT
= ln φ2 + r2

[(
1

r2
− 1

r1

)
+ Cβ

(
1

r2
− 1

r1

)2

w
a
s
a

he oriented interactions and η is the surface fraction permit-
ing oriented interactions. For simplicity, η is arbitrarily set
o 0.3 as Hu and co-workers [29,30] suggested. Cα is also
ot an adjustable parameter and is determined by comparing
ith Panagiotopolous et al.’s Gibbs-ensemble Monte–Carlo

imulation data of Ising lattice. The best fitting value of Cα

s 0.4880 [24].

.1.3. Incorporation of secondary lattice into primary
attice

To incorporate a secondary lattice, we replace εij

y εij − �Asec,ij/Nij in Eq. (4). If oriented interaction
ccurs in the i–j segment–segment pairs, we replace ε̃ by
/kT + 2(�Asec,ij/NijkT) in Eq. (5). If oriented interaction
ccurs in the i–i segment–segment pairs, we replace ε̃ by
/kT − �Asec,ii/NiikT. In this study, we assume the oriented
nteraction occurs in the i–i, j–j and i–j segment–segment
airs. We replace ε̃ by:

12 = (ε∗
11 + ε∗

22 − 2ε∗
12)

+
(

−�Asec,11

N11
− �Asec,22

N22
+ 2�Asec,12

N12

)
(7)

here ε∗
11, ε∗

22 and ε∗
12 are van der Waals energy interaction

arameters. �Asec,11, �Asec,22 and �Asec,12 are the additional
elmholtz functions for the corresponding secondary lattice.
q. (7) then becomes:

˜ = ε∗
11 + ε∗

22 − 2ε∗
12

kT
− 2Cα(1 − η)η

[
δε11/kT

1 + Cα(δε11/kT )(1 −
 + δε22/kT

1 + Cα(δε22/kT )(1 − η)η
− 2δε12/kT

1 + Cα(δε12/kT )(1 − η)η

]
(8)

+
(

2 + 1

r2

)
ε̃

]
− r2

[(
1

r2
− 1

r1

)

+ 2

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃ + 2Cβ

(
1

r2
− 1

r1

)2

+ 2

(
2 + 1

r2

)
ε̃

]
φ2

+ r2

[
4

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃ +

(
2 + 1

r2

)
ε̃

+ Cβ

(
1

r2
− 1

r1

)2

+ 3Cγε̃2

]
φ2

2

− r2

[
6Cγε̃2 + 2

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃

]
φ3

2

+ 3r2Cγε̃2φ4
2 (11)

here φi is the segment fraction of component i, φi = Niri/Nr
nd Nr =∑m

i Niri is the total number of segments in the
ystem and ri is the segment number of components 1 (salt)
nd 2 (polymer).
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2.2. A lattice notation of an extended Debye–Hückel
theory

For a binary polymer/salt system at solute molality m
(mol kg−1polymer), Guggenheim’s expression for the molar
Gibbs energy of mixing �GDH

mixcould be rewritten in the
framework of lattice theory as follows [25,26]:

�GTotal
mix

RT
= φ1

r1vm

[
−4

3
AI3/2τ(I1/2)

]
(12)

τ(x) = 3

x3

[
ln(1 + x) − x + x2

2

]
(13)

where φ1 is the segment fraction of the salt ion, r1 (= 1), the
number of segments per salt ion, v(= vM + vX; where vM
and vX are the number of M and X ions per salt, respec-
tively), the number of ions per salt and I is the ionic strength.
A is the usual Debye–Hückel coefficient. In this study we
fix A = 0.068 (assumed to be independent of temperature) as
an optimization factor for polymer/salt systems. This small
value implies that ion–ion interactions in a polymer/salt sys-
tem are relatively small (for example, calculated percentage
at molality of salt ≈0.1 mol kg−1in PEO/LiCF3SO3 system:
ions = 2%; pairs = 71%; and triples = 27%) [1]. For a binary
polymer/salt system containing 1 kg of polymer andvM moles
o

φ

φ

I

w
M
o
i
T

σ

2.3. van der Waals energy contribution

The energy parameter ε∗
ij in Eq. (19) is due to van der Waals

forces (dispersion and polar forces). For a pure-component i,
ε∗
ii can be estimated using the square of the pure-component

van der Waals solubility parameter of Hansen (Barton) [31],
which is the sum of a dispersion contribution and a polar
contribution: δ2

vdw = δ2
d + δ2

p.

δ2
vdw,i = 3NAε∗

iiri

Vmi

(19)

where NA is the Avogadro number and where δ2
vdw and Vmi

are at 25 ◦C. For a pure-component, the effect of temperature
on ε∗

ii is given by:

εii = φs1ε1 + φs2ε2 (20)

ε∗
jj = ε+

ii

Vmi

(21)

where Vmi depends on temperature. The temperature-
independent parameter ε+

ii can be estimated by:

ε+
ii = δvdw

2V 2
mi, (25◦C)

3NAri
(22)
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f salt ion, φ1, φ2 and I are defined by:

1 = r1vm

(r1vm + r21000)/M
= r1N1

r1N1 + r2N2
,

2 = 1 − φ1 (14)

= 1

2
mv |zMzX| = 1

2

[
(r2φ11000)/M

r1φ2

]
|zMzX| (15)

here M is the molecular weight of polymer in g mol−1 (i.e.
= 900,000 g mol−1). N1, N2, zM, zX and r2 are the number

f moles of salt ion and polymer, the valences of M and X
ons and the number of segments per polymer, respectively.
he chemical potentials are given by:

�µDH
1

RT
= 1

RT

(
∂(r1N1 + r2N2)�GDH

mix

∂N1

)

= − v

1000

(
A |zMzX| I1/2

1 + I1/2

)
(16)

�µDH
2

RT
= 1

RT

(
∂(r1N1 + r2N2)�GDH

mix

∂N1

)

= M

1000

(
2

3
AI3/2σ(I1/2)

)
(17)

(x) = 3

x3

[
1 + x −

(
1

1 + x

)
− 2 ln(1 + x)

]
(18)
i = Vmi(vdw)

15.17 × 10−6 m3 mol−1 (23)

The constant 15.17 × 10−6 m3 mol−1 is the molar hard-
ore volumes of a CH2 group. In our model, the group-
ontribution concept is considered to calculate the chain
ength contrary to that of the existing modified double-lattice

odel.
The cross interaction van der Waals energy parameter ε∗

ij is
stimated by the geometric mean of the corresponding pure-
omponent parameters:

∗
ij =

√
ε∗
iiε

∗
jj (24)

Cross specific energy parameter �ε̃ij is calculated from
air-interaction group parameters:

�εij

k
=

Ns∑
m=1

Np∑
n=1

φmφngmn (25)

here Ns and Np are number of groups in solvents and poly-
ers, respectively. φm and φn are volume fractions of group
in a solvent and that of group n in a polymer, respectively;

nd gmn are pair interaction parameters between group m in
solvent and group n in a polymer. To improve the accuracy
f prediction, we assume that a functional group in a poly-
er is different from that in a solvent. In this study, they are

stimated by fitting experimental solid–liquid equilibria data
f polymer solutions.
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2.4. Ionic conductivity

For binary diffusion in gases or liquids, the generalized
Fick’s equation for heat and mass is as follows [32]:

J∗
A = −cDAB

[
xA∇ ln aA + 1

cRT
[(φA − ωA)∇p

− ρωAωB(gA − gB)] + kT∇ ln T

]
(26)

This equation represents that the thermodynamics of irre-
versible processes dictates using the activity gradient as the
driving force for concentration diffusion. This requires a dif-
fusion coefficient different from Fick’s first law. When the
pressure-, thermal-, and forced-diffusion terms are dropped,
Eq. (26) for binary electrolyte is simplified by:

J∗
s = −D∗Cs∇ ln as (27)

where D*, Cs and as are self-diffusion coefficient, concen-
tration and activity of salt, respectively. This equation may
be rewritten by making use of the fact that the activity is a
function of concentration to obtain:

J∗
s = −D∗Cs

(
d ln as

d Cs

)
∇Cs (28)

when comparing Eq. (28) with the original Fick’s
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ordinating polymer units, which is given by:

Ds = D∗Cs
d(�µeff/RT )

dCs
,

�µeff

RT
= �µs

RT
+ λeff

�µu

RT
(31)

where λeff are the effective co-ordinated units of polymer. A
mathematical form of λ0eωCs is adopted for λeff based on the
exponentially lowering coordinating units, where λ0 and ω

are adjustable model parameters, respectively.
This in turn yields, using the Nernst–Einstein relationship

for multi-component system, the conductivity equation for
SPE having the form as:

σ = F2

RT

∑
i

z2
i viDiCi (32)

where F is a Faraday constant. Since we assume that the
phase at the given condition is binary system of polymer and
salt, the moving object is salt itself instead of cation. If the
charge effect of each ion remains for the ion interactions, this
assumption brings Eq. (32) in a simple form:

σ = F2Cs

RT
Ds

∑
i

z2
i (33)

c

σ

w

a

quation,J∗
s = −Ds∇Cs, this is related to the measured dif-

usion coefficient Ds (based on a concentration driving force)
y [32]:

s = D∗
(

d ln as

d ln cs

)
(29)

here D* characterizes the component mobility in the
bsence of any interactions in the given system [33]. This
ay be rewritten by the fact that the activity is related to the

hemical potential by ln a = �µ/RT

s = D∗Cs
d(�µs/RT )

dCs
(30)

The transport of cations in solvent-free polymer elec-
rolytes differs from that of systems based on molecular
iquids or low molar mass polymers. In the latter systems, ions
an move together with their co-ordinated solvent, but in the
ase of high molecular weight polymers the centre of grav-
ty of the chain cannot be moved significant distances. For
lectrolytes using high molecular weight polymers, cation
ransport does not only occur in conjunction with polymer
iffusion but lithium ion transport also occurs as a result
f segmental motion [34]. Since cations move across co-
rdinating sites which are made up of the acid–base inter-
ctions between solvent and solute molecules, diffusion of
ation must be taken into account with effective co-ordinated
olymer units. To express this co-ordinating effect in the con-
uctivity model, the chemical potential in Eq. (30) is replaced
y the sum of chemical potentials of salt and effective co-
Substituting Eq. (30) into Eq. (33) gives the final ionic
onductivity equation for SPE systems:

= F2Cs

RT
D∗Cs

d(�µs/RT + λ0eωCs (�µu/RT ))

dCs

∑
i

z2
i

(34)

here the chemical potentials are given by:

�µs

RT
=
(

− v

1000

(
A |zMzX| I1/2

1 + I1/2

)

+ ln(1 − φ2) − r1

(
1

r2
− 1

r1

)
φ2

+ r1

[
Cβ

(
1

r2
− 1

r1

)2

+
((

1

r2
− 1

r1

)
+ Cγε̃

)
ε̃

+
(

2 + 1

r2

)
ε̃

]
φ2

2

− 2r1

[((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃ + Cγε̃2

]
φ3

2

+ 3r1Cγε̃2φ4
2

)
(35)

nd

�µu

RT
= Vu

V1

r1

r2

(
M

1000

(
2

3
AI3/2σ(I1/2)

)
+ ln φ2

+ r2

[(
1

r2
− 1

r1

)
+Cβ

(
1

r2
− 1

r1

)2

+
(

2+ 1

r2

)
ε̃

]
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− r2

[(
1

r2
− 1

r1

)
+ 2

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃

+ 2Cβ

(
1

r2
− 1

r1

)2

+ 2

(
2 + 1

r2

)
ε̃

]
φ2

+ r2

[
4

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃ +

(
2 + 1

r2

)
ε̃

+ Cβ

(
1

r2
− 1

r1

)2

+ 3Cγε̃2

]
φ2

2

− r2

[
6Cγε̃2 + 2

((
1

r2
− 1

r1

)
+ Cγε̃

)
ε̃

]
φ3

2

+ 3r2Cγε̃2φ4
2

)
(36)

3. Results and discussion

We establish a new group-contribution model based on
the Nernst–Einstein equation in which the diffusion coeffi-
cient is derived from the modified double-lattice model and
the Debye–Hückel theory with A = 0.068. The new model
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Table 2
Diffusion and co-ordinated unit parameters for PEO/salt systems

T (K) D*(cm2 s−1) λ0 ω (cm3 mol−1)

PEO/LiAsF6

338 2.85 × 10−7 15.713 −275.247
358 6.23 × 10−7 18.527 −212.359
378 1.24 × 10−6 17.677 −192.672
398 2.21 × 10−6 13.163 −157.232

PEO/LiClO4

338 5.3 × 10−8 12.612 −387.425
358 2.5 × 10−7 9.252 −326.247
378 4.0 × 10−7 8.347 −276.437
398 8.0 × 10−7 6.403 −245.623

PEO/NACF3SO3 358 8.2 × 10−8 18.527 −175.241

Fig. 1. The calculated value of diffusion coefficient (D*) plotted against T.
D* = −9.3126 × 10−6 + 2.7456 × 10−8T.

Table 1 gives physical properties of each component such
as melting temperature, heat of fusion, molecular weight,
density, and molar volume [35].

We assume that λ0 and ω are co-ordinating unit parame-
ters. D* is a diffusion coefficient dependent on temperature
and is obtained from elsewhere [37]. These parameters (λ0,
ω and D*) are reported for the co-ordinating effect at vari-
ous temperatures (Table 2). Pai and Bae have [37] set these
parameters constant.

We employ the same assumption as Pai and Bae [37].
These parameters (λ0, ω and D*), however, are not adjustable
parameters but universal parameters dependant on tempera-
ture. In Figs. 1–3, calculated values of λ0, ω and D* are

T
P

M.W. (g mol−1) Density (g cm−3) Vu (cm3 mol−1)

P
5000000 1.21 36.6
900000 1.21 36.6

N 172.06 1.13 36.0
L 106.39 2.43 43.8
L 195.85 2.65 73.9
mploys the secondary lattice concept to take into account
n oriented interaction. The advantage of this model follows
rom its simplicity.

In this work, most of parameters are calculated from
ure-component properties, either from experimental data or
rom published estimation methods. To establish the group-
ontribution method, the most significant role is to determine
he cross-pair interaction between polymer and salt segments.

In energy parameters of polymer/salt systems, ions can
ove together with their co-ordinated solvent, but in the case

f high molecular weight polymers the centre of gravity of the
hain cannot be moved significant distances. For electrolytes
sing high molecular weight polymers, cation transport does
ot only occur in conjunction with polymer diffusion but
ithium ion transport also occurs as a result of segmental

otion [34]. Since cations move across co-ordinating sites
hat are made up of the acid–base interactions between sol-
ent and solute molecules, diffusion of cation must be taken
nto account with effective co-ordinated polymer units.

able 1
hysical properties of PEO and salts

T 0
m (K) �H (J mol−1)

EO
338.15 6798.00a

338.15 8284.32a

aCF3SO3 527.15 10433.72
iClO4 509.15 14600.00
iAsF6 525.63 57188.20

a J unit−1.
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Fig. 2. The calculated value of co-ordinating units parameters (λ0) plotted
against T. λ0 = −586.04 + 3.328x − 0.00458x2.

compared with experimentally determined values calculated
by Pai and Bae. To simply correlate with simulation data, λ0,
ω and D* are suggested as follow:

D∗ = −9.31 × 10−6 + 2.75 × 10−8T (37)

ω = 17988.91 − 98.87T + 0.13T 2 (38)

λ0 = −586.04 + 3.33T − 0.00458T 2 (39)

These Eqs. (37)–(39) provide a simple and accurate the
expression for predicting ionic conductivity.

Fig. 4 shows ionic conductivities of PEO/NaCF3SO3 sys-
tem. The dark circles are experimental data reported by Ma
et al. [36] and the lines are calculated by the proposed model.
To differentiate chemical potential with concentration, the

F
a

Fig. 4. Ionic conductivity as a function of weight% of NaCF3SO3 at
358.15 K. (A) The solid line is calculated from D*, an adjustable model
parameter and λ0 and ω are calculated by Eqs. (38) and (39); (B) the dashed
line is calculated with fixed D* at 3.5 × 10−7 and λ0 and ω are calculated by
using Eqs. (38) and (39); and (C) the dotted line is calculated from the final
ionic conductivity equation (Eq. (34)) using Eqs. (37)–(39) for the given
systems. The dark circles are experimental data reported by Hu et al. [30],
and the lines are calculated values using the proposed model.

salt concentration is calculated from the salt mass fraction as
follows:

C1 = ρ1w1

M1
(40)

where w1 is the weight fraction of salt. We set η = 0.3 and
z = 6 as suggested by Hu et al. [29]. The density of salt, ρ1,
then is given by:

1

ρ1
= 1

ρ0
2

+ w1

(
V1

M1
− 1

ρ0
2

)
(41)

where ρ0
2 is the density of PEO.

In Fig. 4, each line is calculated based on the different
cases of λ0, ω and D* parameters. The dotted line is calcu-
lated from the final ionic conductivity equation (Eq. (34))
using Eqs. (37)–(39) for the given systems. Dashed line is
calculated with fixed D* at 3.5 × 10−7. λ0 and ω are cal-
culated by using Eqs. (38) and (39), respectively. Results
show that these two cases slightly overestimate ionic con-
ductivities of the given system. The significance of such
disagreement is difficult to assess because D* especially is
very sensitive to the given system and also is very depen-
dant on temperature. When we set D* is an adjustable model
parameter and λ0 and ω are calculated by Eqs. (38) and
(39), respectively, we obtain the best fitting line (solid line in
F

a
r
a
w

ig. 3. The calculated value of co-ordinating units parameters (ω) plotted
gainst T. ω = 17988.91 − 98.87T + 0.133T2.
ig. 4).
Figs. 5 and 6 show ionic conductivities of PEO/LiClO4

nd PEO/LiAsF6 systems in which the experimental data are
eported by Robitallie and Fauteux [38]. These figures are
lso calculated by the ionic conductivity equation (Eq. (34))
ith Eqs. (37)–(39). Dotted, dashed and solid lines are also
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Fig. 5. (a) Ionic conductivity as a function of weight% of LiClO4 at
378.15 K. (A) The solid line is calculated from D*, an adjustable model
parameter and λ0 and ω are calculated by Eqs. (38) and (39); (B) the dashed
line is calculated with fixed D* at 3.5 × 10−7 and λ0 and ω are calculated by
using Eqs. (38) and (39); and (C) the dotted line is calculated from the final
ionic conductivity equation (Eq. (34)) using Eqs. (37)–(39) for the given
systems. (b) Ionic conductivity of PEO/LiClO4 system. Experimental data
are reported by Barton [31] and the lines are calculated by the proposed
model.

evaluated by the same procedure as in Fig. 4 with previously
obtained group interaction energy parameters (see Table 3.)
with no additional group interaction parameters. As shown
in Figs. 5(b) and 6(b), the fitted values agree fairly well with
the experimental data.

Table 3
Group interaction parameter gmn (k)

Salts Polymer (PEO)

CH2 O

Li −386.47 −762.45
CF3SO3 869.91 240.719
Na −3518.75 −3483.71
AsF6 235.05 −495.72
ClO4 1243.33 −257.99

Fig. 6. (a) Ionic conductivity as a function of weight% of LiAsF6 at
378.15 K. (A) The solid line is calculated from D*, an adjustable model
parameter and λ0 and ω are calculated by Eqs. (38) and (39); (B) the dashed
line is calculated with fixed D* at 3.5 × 10−7 and λ0 and ω are calculated by
using Eqs. (38) and (39); and (C) the dotted line is calculated from the final
ionic conductivity equation (Eq. (34)) using Eqs. (37)–(39) for the given
systems. (b) Ionic conductivity of PEO/LiAsF6 system. Experimental data
are reported by Barton [31] and the lines are calculated by the proposed
model.

4. Conclusion

We establish a new group-contribution model based on
the Nernst–Einstein equation in which the diffusion coeffi-
cient is derived from modified double-lattice model and the
Debye–Hückel theory with A = 0.068. The proposed model
gives a simplified and improved expression for the ionic con-
ductivity for polymer/salt systems that includes the van der
Waals energy contribution. The ultimate goal of this work is
to describe ionic conductivity of SPE/salts system using the
group-contribution method.

When D* is determined by Eq. (37), calculated values are
slightly overestimated experimentally observed ionic con-
ductivities of the given system. The significance of such
disagreement is difficult to assess because D* especially is
very sensitive to given system and also is very dependant
on temperature. When we set D* be an adjustable model
parameter and λ0 and ω are calculated by Eqs. (38) and (39),
respectively, the best fitting results are obtained.
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To characterize most common SPE/salt system, more
experimental data are required to obtain numerous group
parameters for other electrolyte systems, and then to extend
the group-contribution method to a larger variety of systems.
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